
Chapter

IV-5
IV-5User-Defined Menus

Overview.. 118
Menu Definition Syntax ... 118
Built-in Menus That Can Be Extended... 120
Adding a New Main Menu ... 120
Dynamic Menu Items ... 120

Optional Menu Items .. 122
Multiple Menu Items.. 122
Consolidating Menu Items Into a Submenu ... 123
Specialized Menu Item Definitions .. 123
Special Characters in Menu Item Strings... 125

Special Menu Characters on Windows... 126
Enabling and Disabling Special Character Interpretation ... 127
Keyboard Shortcuts ... 127
Function Keys... 128

Marquee Menus .. 129
Trace Menus... 129
GraphPopup Menu... 129
Popup Contextual Menus .. 130

Chapter IV-5 — User-Defined Menus

IV-118

Overview
You can add your own menu items to many Igor menus by writing a menu definition in a procedure
window. A simple menu definition looks like this:
Menu "Macros"

"Load Data File/1"
"Do Analysis/2"
"Print Report"

End

This adds three items to the Macros menu. If you choose Load Data File or press Command-1 (Macintosh)
or Ctrl+1 (Windows), Igor executes the procedure LoadDataFile which, presumably, you have written in a
procedure window. The command executed when you select a particular item is derived from the text of
the item. This is an implicit specification of the item’s execution text.

You can also explicitly specify the execution text:
Menu "Macros"

"Load Data File/1", Beep; LoadWave/G
"Do Analysis/2"
"Print Report"

End

Now if you choose Load Data File, Igor will execute “Beep; LoadWave/G”.

When you choose a user menu item, Igor checks to see if there is execution text for that item. If there is, Igor
executes it. If not, Igor makes a procedure name from the menu item string. It does this by removing any
characters that are not legal characters in a procedure name. Then it executes the procedure. For example,
choosing an item that says
"Set Sampling Rate..."

executes the SetSamplingRate procedure.

If a procedure window is the top window and if Option (Macintosh) or Alt (Windows) is pressed when you
choose a menu item, Igor tries to find the procedure in the window, rather than executing it.

A menu definition can add submenus as well as regular menu items.
Menu "Macros"

Submenu "Load Data File"
"Text File"
"Binary File"

End

Submenu "Do Analysis"
"Method A"
"Method B"

End

"Print Report"
End

This adds three items to the Macros menu, two submenus and one regular item. You can nest submenus to
any depth.

Menu Definition Syntax
The syntax for a menu definition is:
Menu <Menu title string> [,<menu options>]

[<Menu help strings>]
<Menu item string> [,<menu item flags>] [,<execution text>]
[<Item help strings>]

Chapter IV-5 — User-Defined Menus

IV-119

…
Submenu <Submenu title string>

[<Submenu help strings>]
<Submenu item string> [,<execution text>]
[<Item help strings>]
…

End
End

<Menu title string> is the title of the menu to which you want to add items. Often this will be Macros
but you can also add items to Analysis, Misc and many other built-in Igor menus, including some sub-
menus and the graph marquee and layout marquee menus. If <Menu title string> is not the title of a
built-in menu then Igor creates a new main menu on the menu bar.

<Menu options> are optional comma-separated keywords that change the behavior of the menu. The
allowed keywords are dynamic, hideable, and contextualmenu. For usage, see Dynamic Menu Items
(see page IV-120), HideIgorMenus (see page V-294), and PopupContextualMenu (see page V-639) respec-
tively.

<Menu help strings> specifies the help for the menu title. This is optional. As of Igor7, menu help is
not supported and the menu help specification, if present, is ignored.

<Menu item string> is the text to appear for a single menu item, a semicolon-separated string list to
define Multiple Menu Items (see page IV-122), or Specialized Menu Item Definitions (see page IV-123)
such as a color, line style, or font menu.

<Menu item flags> are optional flags that modify the behavior of the menu item. The only flag currently
supported is /Q, which prevents Igor from storing the executed command in the history area. This is useful
for menu commands that are executed over and over through a keyboard shortcut. This feature was intro-
duced in Igor Pro 5. Using it will cause errors in earlier versions of Igor. Menus defined with the
contextualmenu keyword implicitly set all the menu item flags in the entire menu to /Q; it doesn't matter
whether /Q is explicitly set or not, the executed command is not stored in the history area.

<Execution text> is an Igor command to execute for the menu item. If omitted, Igor makes a procedure
name from the menu item string and executes that procedure. Use "" to prevent command execution (useful
only with PopupContextualMenu/N).

<Item help strings> specifies the help for the menu item. This is optional. As of Igor7, menu help is
not supported and the menu item help specification, if present, is ignored.

The Submenu keyword introduces a submenu with <Submenu title string> as its title. The submenu
continues until the next End keyword.

<Submenu item string> acts just like <Menu item string>.

Chapter IV-5 — User-Defined Menus

IV-120

Built-in Menus That Can Be Extended
Here are the titles of built-in Igor menus to which you can add items:

These menu titles must appear in double quotes when used in a menu definition.

Use these menu titles to identify the menu to which you want to append items even if you are working with
a version of Igor translated into a language other than English.

The GraphMarquee, LayoutMarquee, TracePopup, AllTracesPopup, and GraphPopup menus are contex-
tual menus. See Marquee Menus on page IV-129 and Trace Menus on page IV-129. The contextual Graph-
Popup appears when you control-click (Macintosh) or right-click (Windows) in a graph, away from any trace,
while in operate mode.

All other Igor menus, including menus added by XOPs, can not accept user-defined items.

The HideIgorMenus operation (see page V-294) and the ShowIgorMenus operation (see page V-741) hide
or show most of the built-in main menus (not the Marquee and Popup menus). User-defined menus that
add items to built-in menus are normally not hidden or shown by these operations. When a built-in menu
is hidden, the user-defined menu items create a user-defined menu with only user-defined items. For exam-
ple, this user-defined menu:
Menu "Table"

"Append Columns to Table...", DoIgorMenu "Table", "Append Columns to Table"
End

will create a Table menu with only one item in it after the HideIgorMenus "Table" command is executed.

To have your user-defined menu items hidden along with the built-in menu items, add the hideable
keyword after the Menu definition:
Menu "Table", hideable

"Append Columns to Table...", DoIgorMenu "Table", "Append Columns to Table"
End

Adding a New Main Menu
You can add an entirely new menu to the main menu bar by using a menu title that is not used by Igor. For
example:
Menu "Test"

"Load Data File"
"Do Analysis"
"Print Report"

End

Dynamic Menu Items
In the examples shown so far all of the user-defined menu items are static. Once defined, they never change.
This is sufficient for the vast majority of cases and is by far the easiest way to define menu items.

Add Controls AllTracesPopup Analysis Append to Graph

Control Data Edit File

Gizmo Graph GraphMarquee GraphPopup

Help Layout LayoutMarquee Load Waves

Macros Misc Statistics New

Notebook Open File Panel Procedure

Save Waves Table TracePopup

Chapter IV-5 — User-Defined Menus

IV-121

Igor also provides support for dynamic user-defined menu items. A dynamic menu item changes depending
on circumstances. The item might be enabled under some circumstances and disabled under others. It might
be checked or deselected. Its text may toggle between two states (e.g. “Show Tools” and “Hide Tools”).

Because dynamic menus are much more difficult to program than static menus and also slow down Igor’s
response to a menu-click, we recommend that you keep your use of dynamic menus to a minimum. The
effort you expend to make your menu items dynamic may not be worth the time you spend to do it.

For a menu item to be dynamic, you must define it using a string expression instead of the literal strings
used so far. Here is an example.
Function DoAnalysis()

Print "Analysis Done"
End

Function ToggleTurboMode()
Variable prevMode = NumVarOrDefault("root:gTurboMode", 0)
Variable/G root:gTurboMode = !prevMode

End

Function/S MacrosMenuItem(itemNumber)
Variable itemNumber

Variable turbo = NumVarOrDefault("root:gTurboMode", 0)

if (itemNumber == 1)
if (strlen(WaveList("*", ";", ""))==0) // any waves exist?

return "(Do Analysis" // disabled state
else

return "Do Analysis" // enabled state
endif

endif

if (itemNumber == 2)
if (turbo)

return "!"+num2char(18)+"Turbo" // Turbo with a check
else

return "Turbo"
endif

endif
End

Menu "Macros", dynamic
MacrosMenuItem(1)
MacrosMenuItem(2), /Q, ToggleTurboMode()

End

In this example, the text for the menu item is computed by the MacrosMenuItem function. It computes text
for item 1 and for item 2 of the menu. Item 1 can be enabled or disabled. Item 2 can be checked or unchecked.

The dynamic keyword specifies that the menu definition contains a string expression that needs to be
reevaluated each time the menu item is drawn. This rebuilds the user-defined menu each time the user
clicks in the menu bar. Under the current implementation, it rebuilds all user menus each time the user
clicks in the menu bar if any user-defined menu is declared dynamic. If you use a large number of user-
defined items, the time to rebuild the menu items may be noticeable.

There is another technique for making menu items change. You define a menu item using a string expres-
sion rather than a literal string but you do not declare the menu dynamic. Instead, you call the BuildMenu
operation whenever you need the menu item to be rebuilt. Here is an example:
Function ToggleItem1()

String item1Str = StrVarOrDefault("root:MacrosItem1Str","On")
if (CmpStr(item1Str,"On") == 0) // Item is now "On"?

Chapter IV-5 — User-Defined Menus

IV-122

String/G root:MacrosItem1Str = "Off"
else

String/G root:MacrosItem1Str = "On"
endif
BuildMenu "Macros"

End

Menu "Macros"
StrVarOrDefault("root:MacrosItem1Str","On"), /Q, ToggleItem1()

End

Here, the menu item is controlled by the global string variable MacrosItem1Str. When the user chooses the menu
item, the ToggleItem1 function runs. This function changes the MacrosItem1Str string and then calls BuildMenu,
which rebuilds the user-defined menu the next time the user clicks in the menu bar. Under the current imple-
mentation, it rebuilds all user-defined menus if BuildMenu is called for any user-defined menu.

Optional Menu Items
A dynamic user-defined menu item disappears from the menu if the menu item string expression evaluates to
""; the remainder of the menu definition line is then ignored. This makes possible a variable number of items
in a user-defined menu list. This example adds a menu listing the names of up to 8 waves in the current data
folder. If the current data folder contains less than 8 waves, then only those that exist are shown in the menu:

Menu "Waves", dynamic
WaveName("",0,4), DoSomething($WaveName("",0,4))
WaveName("",1,4), DoSomething($WaveName("",1,4))
WaveName("",2,4), DoSomething($WaveName("",2,4))
WaveName("",3,4), DoSomething($WaveName("",3,4))
WaveName("",4,4), DoSomething($WaveName("",4,4))
WaveName("",5,4), DoSomething($WaveName("",5,4))
WaveName("",6,4), DoSomething($WaveName("",6,4))
WaveName("",7,4), DoSomething($WaveName("",7,4))

End

Function DoSomething(w)
Wave/Z w

if(WaveExists(w))
Print "DoSomething: wave's name is "+NameOfWave(w)

endif
End

This works because WaveName returns "" if the indexed wave doesn’t exist.

Note that each potential item must have a menu definition line that either appears or disappears.

Multiple Menu Items
A menu item string that contains a semicolon-separated “string list” (see StringFromList on page V-865)
generates a menu item for each item in the list. For example:

Menu "Multi-Menu"
"first item;second item;", DoItem()

End

Multi-Menu is a two-item menu. When either item is selected the DoItem procedure is called.

This begs the question: How does the DoItem procedure know which item was selected? The answer is that
DoItem must call the GetLastUserMenuInfo operation (see page V-264) and examine the appropriate
returned variables, usually V_value (the selected item’s one-based item number) or S_Value (the selected
item’s text).

Chapter IV-5 — User-Defined Menus

IV-123

The string list can be dynamic, too. The above "Waves" example can be rewritten to handle an arbitrary
number of waves using this definition:

Menu "Waves", dynamic
WaveList("*",";",""), DoItem()

End

Function DoItem()
GetLastUserMenuInfo // Sets S_value, V_value, etc.
WAVE/Z w= $S_value
if(WaveExists(w))

Print "The wave's name is "+NameOfWave(w)
endif

End

Consolidating Menu Items Into a Submenu
It is common to have many utility procedure files open at the same time. Each procedure file could add menu
items which would clutter Igor’s menus. When you create a utility procedure file that adds multiple menu
items, it is usually a good idea to consolidate all of the menu items into one submenu. Here is an example.

Let’s say we have a procedure file full of utilities for doing frequency-domain data analysis and that it con-
tains the following:
Function ParzenDialog()

…
End

Function WelchDialog()
…

End

Function KaiserDialog()
…

End

We can consolidate all of the menu items into a single submenu in the Analysis menu:
Menu "Analysis"

Submenu "Windows"
"Parzen…", ParzenDialog()
"Welch…", WelchDialog()
"Kaiser…", KaiserDialog()

End
End

Specialized Menu Item Definitions
A menu item string that contains certain special values adds a specialized menu such as a color menu.

Only one specialized menu item string is allowed in each menu or submenu, it must be the first item, and
it must be the only item.

Menu Item String Result

"*CHARACTER* "Character menu, no character is initially selected, font is Geneva, font
size is 12.

"*CHARACTER*(Symbol) "Character menu of Symbol font.

"*CHARACTER*(Symbol,36) "Character menu of Symbol font in 36 point size.

"*CHARACTER*(,36) "Character menu of Geneva font in 36 point size.

Chapter IV-5 — User-Defined Menus

IV-124

To retrieve the selected color, line style, etc., the execution text must be a procedure that calls the GetLas-
tUserMenuInfo operation (see page V-264). Here’s an example of a color submenu implementation:
Menu "Main", dynamic

"First Item", /Q, Print "First Item"
Submenu "Color"

CurrentColor(), /Q, SetSelectedColor() // Must be first submenu item
// No items allowed here

End
End

Function InitializeColors()
NVAR/Z red= root:red
if(!NVAR_Exists(red))

Variable/G root:red=65535, root:green=0, root:blue=1, root:alpha=65535
endif

End

Function/S CurrentColor()
InitializeColors()
NVAR red = root:red
NVAR green = root:green
NVAR blue = root:blue
NVAR alpha = root:alpha
String menuText
sprintf menuText, "*COLORPOP*(%d,%d,%d,%d)", red, green, blue, alpha
return menuText

End

Function SetSelectedColor()
GetLastUserMenuInfo// Sets V_Red, V_Green, V_Blue, V_Alpha, S_value, V_value

"*CHARACTER*(Symbol,36,p) "Character menu of Symbol font in 36 point size, initial character is p (π).

"*COLORTABLEPOP* "Color table menu, initial table is Grays.

"*COLORTABLEPOP*(YellowHot) "Color table menu, initial table is YellowHot. See CTabList on page
V-100 for a list of color tables.

"*COLORTABLEPOP*(YellowHot,1) "Color table menu with the colors drawn reversed.

"*COLORPOP* "Color menu, initial color is black.

"*COLORPOP*(0,65535,0) "Color menu, initial color is green.

"*FONT* "Font menu, no font is initially selected, does not include “default” as a font
choice.

"*FONT*(Arial) "Font menu, Arial is initially selected.

"*FONT*(Arial,default) "Font menu with Arial initially selected and including “default” as a
font choice.

"*LINESTYLEPOP* "Line style menu, no line style is initially selected.

"*LINESTYLEPOP*(3) "Line style menu, initial line style is style=3 (coarse dashed line).

"*MARKERPOP* "Marker menu, no marker is initially selected.

"*MARKERPOP*(8) "Marker menu, initial marker is 8 (empty circle).

"*PATTERNPOP* "Pattern menu, no pattern is initially selected.

"*PATTERNPOP*(1) "Pattern menu, initial pattern is 1 (SW-NE light diagonal).

Menu Item String Result

Chapter IV-5 — User-Defined Menus

IV-125

NVAR red = root:red
NVAR green = root:green
NVAR blue = root:blue
NVAR alpha = root:alpha
red = V_Red
green = V_Green
blue = V_Blue
alpha = V_Alpha

Make/O/N=(2,2,4) root:colorSpot
Wave colorSpot = root:colorSpot
colorSpot[][][0] = V_Red
colorSpot[][][1] = V_Green
colorSpot[][][2] = V_Blue
colorSpot[][][3] = V_Alpha

CheckDisplayed/A colorSpot
if (V_Flag == 0)

NewImage colorSpot
endif

End

Special Characters in Menu Item Strings
You can control some aspects of a menu item using special characters. These special characters are based
on the behavior of the Macintosh menu manager and are only partially supported on Windows (see Special
Menu Characters on Windows on page IV-126). They affect user-defined menus in the main menu bar. On
Macintosh, but not on Windows, they also affect user-defined pop-up menus in control panels, graphs and
simple input dialogs.

By default, special character interpretation is enabled in user-defined menu bar menus and is disabled in
user-defined control panel, graph and simple input dialog pop-up menus. This is almost always what you
would want. In some cases, you might want to override the default behavior. This is discussed under
Enabling and Disabling Special Character Interpretation on page IV-127.

This table shows the special characters and their effect if special character interpretation is enabled. See
Special Menu Characters on Windows on page IV-126 for Windows-specific considerations.

Character Behavior
/ Creates a keyboard shortcut for the menu item.

The character after the slash defines the item’s keyboard shortcut. For example, "Low
Pass/1" makes the item “Low Pass” with a keyboard shortcut for Command-1
(Macintosh) or Ctrl-1 (Windows). You can also use function keys. To avoid conflicts with
Igor, use the numeric keys and the function keys only. See Keyboard Shortcuts on page
IV-127 and Function Keys on page IV-128 for further details.

Keyboard shortcuts are not supported in the graph marquee and layout marquee menus.
- Creates a divider between menu items.

If a hyphen (minus sign) is the first character in the item then the item will be a disabled
divider. This can be a problem when trying to put negative numbers in a menu. Use a leading
space character to prevent this. The string “(-” also disables the corresponding divider.

(Disables the menu item.

If the first character of the item text is a left parenthesis then the item will be disabled.

Chapter IV-5 — User-Defined Menus

IV-126

Whereas it is standard practice to use a semicolon to separate items in a pop-up menu in a control panel,
graph or simple input dialog, you should avoid using the semicolon in user-defined main-menu-bar
menus. It is clearer if you use one item per line. It is also necessary in some cases (see Menu Definition
Syntax on page IV-118).

If special character interpretation is disabled, these characters will appear in the menu item instead of
having their special effect. The semicolon character is treated as a separator of menu items even if special
character interpretation is disabled.

Special Menu Characters on Windows
On Windows, these characters are treated as special in menu bar menus but not in pop-up menus in graphs,
control panels, and simple input dialogs. The following table shows which special characters are supported.

In general, Windows does not allow using Ctrl+<punctuation> as an accelerator. Therefore, in the following
example, the accelerator will not do anything:
Menu "Macros"

"Test/[" // "/[" will not work on Windows.
End

On Windows, you can designate a character in a menu item as a mnemonic keystroke by preceding the
character with an ampersand:
Menu "Macros"

"&Test", Print "This is a test"
End

This designates “T” as the mnemonic keystroke for Test. To invoke this menu item, press Alt and release it,
press the “M” key to highlight the Macros menu, and press the “T” key to invoke the Test item. If you hold
the Alt key pressed while pressing the “M” and “T” keys and if the active window is a procedure window,
Igor will not execute the item’s command but rather will bring up the procedure window and display the
menu definition. This is a programmer’s shortcut.

Note: The mnemonic keystroke is not supported on Macintosh. For this reason, if you care about cross-
platform compatibility, you should not use ampersands in your menu items.

! Adds a mark to the menu item.

If an exclamation point appears in the item, any character after the exclamation point
adds a checkmark to the left of the menu item. For example:

"Low Pass!*"

makes an item "Low Pass" with an checkmark to the left.

For compatibility with Igor6, use:

"Low Pass!" + num2char(18)

; Separates one menu item from the next.

Example: "Item 1;Item 2"

Character Meaning
/ Defines accelerator
- Divider
(Disables item
! Adds mark to item
; Separates items

Character Behavior

Chapter IV-5 — User-Defined Menus

IV-127

On Macintosh, if you include a single ampersand in a menu item, it does not appear in the menu
item. If you use a double ampersand, it appears as a single ampersand.

Enabling and Disabling Special Character Interpretation
The interpretation of special characters in menu items can sometimes get in the way. For example, you may
want a menu item to say “m/s” or “A<B”. With special character interpretation enabled, the first of these
would become “m” with “s” as the keyboard shortcut and the second would become “A” in a bold typeface.

Igor provides WaveMetrics-defined escape sequences that allow you to override the default state of special char-
acter interpretation. These escape sequences are case sensitive and must appear at the very start of the menu item:

The most common use for this will be in a user-defined menu bar menu in which the default state is on and
you want to display a special character in the menu item text itself. That is what you can do with the “\\M0”
escape sequence.

Another possible use on Macintosh is to create a disabled menu item in a control panel, graph or simple input
dialog pop-up menu. The default state of special character interpretation in pop-up menus is off. To disable
the item, you either need to turn it on, using “\\M1” or to use the technique described in the next paragraph.

What if we want to include a special character in the menu item itself and have a keyboard shortcut for that
item? The first desire requires that we turn special character interpretation off and the second requires that
we turn it on. The WaveMetrics-defined escape sequence can be extended to handle this. For example:
"\\M0:/1:m/s"

The initial “\\M0” turns normal special character interpretation off. The first colon specifies that one or more
special characters are coming. The /1 makes Command-1 (Macintosh) or Ctrl+1 (Windows) the keyboard short-
cut for this item. The second colon marks the end of the menu commands and starts the regular menu text
which is displayed in the menu without special character interpretation. The final result is as shown above.

Any of the special characters can appear between the first colon and the second. For example:

Menu "Macros"
"\\M0:/1:(Cmd-1 on Macintosh, Ctrl+1 on Windows)"
"\\M0:(:(Disabled item)"
"\\M0:!*:(Checked)"
"\\M0:/2!*:(Cmd-2 on Macintosh, Ctrl+2 on Windows and checked)"

End

The \\M escape code affects just the menu item currently being defined. In the following example, special
character interpretation is enabled for the first item but not for the second:
"\\M1(First item;(Second item"

To enable special character interpretation for both items, we need to write:
"\\M1(First item;\\M1(Second item"

Keyboard Shortcuts
A keyboard shortcut is a set of one or more keys which invoke a menu item. In a menu item string, a key-
board shortcut is introduced by the / special character. For example:
Menu "Macros"

"Test/1" // The keyboard shortcut is Cmd-1 (Macintosh)
End // or Ctrl+1 (Windows).

Escape Code Effect Example
"\\M0" Turns special character

interpretation off.
"\\M0m/s"

"\\M1" Turns special character
interpretation on.

"\\M1m/s"

Chapter IV-5 — User-Defined Menus

IV-128

All of the plain alphabetic keyboard shortcuts (/A through /Z) are used by Igor.

Numeric keyboard shortcuts (/0 through /9) are available for use in user menu definitions as are Function
Keys, described below.

You can define a numeric keyboard shortcut that includes one or more modifier keys. The modifier keys
are:

For example:
Menu "Macros"

"Test/1" // Cmd-1, Ctrl+1
"Test/S1" // Shift-Cmd-1, Ctrl+Shift+1.
"Test/O1" // Option-Cmd-1, Ctrl+Alt+1
"Test/OS1" // Option-Shift-Cmd-1, Ctrl+Shift+Alt+1

End

Function Keys
Most keyboards have function keys labeled F1 through F12. In Igor, you can treat a function key as a key-
board shortcut that invokes a menu item.
Note: Mac OS X reserves nearly all function keys for itself. In order to use function keys for an

application, you must check a checkbox in the Keyboard control panel. Even then the OS will
intercept some function keys.

Note: On Windows, Igor uses F1 for help-related operations. F1 will not work as a keyboard shortcut on
Windows. Also, the Windows OS reserves Ctrl-F4 and Ctrl-F6 for closing and reordering windows.
On some systems, F12 is reserved for debugging.

Here is a simple function key example:
Menu "Macros"

"Test/F5" // The keyboard shortcut is F5.
End

As with other keyboard shortcuts, you can specify that one or more modifier keys must be pressed along
with the function key. By including the “C” modifier character, you can specify that Command (Macintosh)
or Ctrl (Windows) must also be pressed:
Menu "Macros"

// Function keys without modifiers
"Test/F5" // F5

// Function keys with Shift and/or Option/Alt modifiers
"Test/SF5" // Shift-F5 (Macintosh), Shift+F5 (Windows)
"Test/OF5" // Option-F5, Alt+F5
"Test/SOF5" // Shift-Option-F5, Shift+Alt+F5

// Function keys with Command (Macintosh) or Ctrl (Windows) modifiers
"Test/CF5" // Cmd-F5, Ctrl+F5
"Test/SCF5" // Shift-Cmd-F5, Shift-Ctrl-F5
"Test/OCF5" // Option-Cmd-F5, Alt-Ctrl-F5
"Test/OSCF5" // Option-Shift-Cmd-F5, Alt-Shift-Ctrl-F5

// Function keys with Ctrl (Macintosh) or Meta (Windows) modifiers
"Test/LOSCF5" // Control-Option-Shift-Cmd-F5, Meta+Alt+Shift+Ctrl+F5

End

Macintosh: Shift (S), Option (O), Control (L)

Windows: Shift (S), Alt (O), Meta (L)
(Meta is often called the “Windows key”.

Chapter IV-5 — User-Defined Menus

IV-129

Although some keyboards have function keys labeled F13 and higher, they do not behave consistently and
are not supported.

Marquee Menus
Igor has two menus called “marquee menus”. In graphs and page layouts you create a marquee when you
drag diagonally. Igor displays a dashed-line box indicating the area of the graph or layout that you have
selected. If you click inside the marquee, you get a marquee menu.

You can add your own menu items to a marquee menu by creating a GraphMarquee or LayoutMarquee
menu definition. For example:
Menu "GraphMarquee"

"Print Marquee Coordinates", GetMarquee bottom; Print V_left, V_right
End

The use of keyboard shortcuts is not supported in marquee menus.

See Marquee Menu as Input Device on page IV-151 for details.

Trace Menus
Igor has two “trace” menus named “TracePopup” and “AllTracesPopup”. When you control-click or right-
click in a graph on a trace you get the TracesPopup menu. If you press Shift while clicking, you get the All-
TracesPopup (standard menu items in that menu operated on all the traces in the graph). You can append
menu items to these menus with Menu “TracePopup” and Menu “AllTracesPopup” definitions.

For example, this code adds an Identify Trace item to the TracePopup contextual menu but not to the All-
TracesPopup menu:
Menu "TracePopup"

"Identify Trace", /Q, IdentifyTrace()
End

Function IdentifyTrace()
GetLastUserMenuInfo
Print S_graphName, S_traceName

End

GraphPopup Menu
Igor has a contextual menu named "GraphPopup". When you control-click or right-click in a graph away
from any trace, you get the GraphPopup menu. You can append menu items to this menu with a Graph-
Popup menu definition.

For example, the following code adds an "Identify Graph" item to the GraphPopup contextual menu:

Menu "GraphPopup"
"Identify Graph", /Q, IdentifyGraph()

End

Function IdentifyGraph()
Print WinName(0,1)

End

Chapter IV-5 — User-Defined Menus

IV-130

Popup Contextual Menus
You can create a custom pop-up contextual menu to respond to a control-click or right-click. For an exam-
ple, see Creating a Contextual Menu on page IV-149.

	User-Defined Menus
	Overview
	Menu Definition Syntax
	Built-in Menus That Can Be Extended
	Adding a New Main Menu
	Dynamic Menu Items
	Optional Menu Items

	Multiple Menu Items
	Consolidating Menu Items Into a Submenu
	Specialized Menu Item Definitions
	Special Characters in Menu Item Strings
	Special Menu Characters on Windows
	Enabling and Disabling Special Character Interpretation
	Keyboard Shortcuts
	Function Keys

	Marquee Menus
	Trace Menus
	GraphPopup Menu
	Popup Contextual Menus

